SALAM SELAMAT DATANG

"ASSALAMU'ALAIKUM WARAHMATULLAHI WABARAKATUH" SELAMAT DATANG DI JELI.WEB.ID "TETAP SEMANGAT MENCERDASKAN BANGSA" dan BERMANFAAT UNTUK ORANG LAIN,

Minggu, 20 Juli 2014

Penemuan Terbimbing secara Induktif



Sebelum membahas Model Penemuan Terbimbing, ada baiknya terlebih dahulu kita tinjau sejenak Model Penemuan Murni. Dalam Model Penemuan Murni, yang oleh Maier (1995: 8) disebutnya sebagai “heuristik“, apa yang hendak ditemukan, jalan atau proses semata-mata ditentukan oleh siswa itu sendiri. Menurut Jerome Bruner (Cooney, Davis:1975,138), penemuan adalah suatu proses, suatu jalan/cara dalam mendekati permasalahan bukannya suatu produk atau item pengetahuan tertentu. Proses penemuan dapat menjadi kemampuan umum melalui latihan pemecahan masalah dan praktek membentuk dan menguji hipotesis. Di dalam pandangan Bruner, belajar dengan penemuan adalah belajar untuk menemukan, dimana seorang siswa dihadapkan dengan suatu masalah atau situasi yang tampaknya ganjil sehingga siswa dapat mencari jalan pemecahan.
Metode Penemuan Murni ini kurang tepat karena pada umumnya sebagian besar siswa masih membutuhkan konsep dasar untuk dapat menemukan sesuatu. Hal ini terkait erat dengan karakteristik pelajaran matematika yang lebih merupakan deductive reasoning dalam perumusannya. Di samping itu, penemuan tanpa bimbingan dapat memakan waktu berhari-hari dalam pelaksanaannya atau bahkan siswa tidak berbuat apa-apa karena tidak tahu, begitu pula jalannya penemuan. Jelas bahwa model penemuan ini kurang tepat untuk siswa sekolah dasar maupun lanjutan apabila tidak dengan bimbingan guru, karena materi matematika yang ada dalam kurikulum tidak banyak yang dapat dipelajari karena kekurangan waktu bahkan siswa cenderung tergesa-gesa menarik kesimpulan dan tidak semua siswa dapat menemukan sendiri. Mengingat hal tersebut timbul Metode penemuan yang dipandu oleh guru, ini pertama dikenalkan oleh Plato dalam suatu dialog antara Socrates dan seorang anak, maka sering disebut juga dengan metoda Socratic (Cooney, Davis:1975, 136). Metode ini melibatkan suatu dialog/interaksi antara siswa dan guru di mana siswa mencari kesimpulan yang diinginkan melalui suatu urutan pertanyaan yang diatur oleh guru. Salah satu buku yang pertama menggunakan teknik penemuan terbimbing adalah tentang aritmetika oleh Warren Colburn yang pelajaran pertamanya berjudul: Intellectual Arithmetic upon the Inductive Method of Instruction, diterbitkan pada tahun 1821, yang isinya menekankan penggunaan suatu urutan pertanyaan dalam mengembangkan konsep dan prinsip matematika. Ini menirukan metode Socratic di mana Socrates dengan pertolongan pertanyaan yang ia tanyakan dimungkinkan siswa untuk menjawab pertanyaan tersebut.
Interaksi dalam metode ini menekankan pada adanya interaksi dalam kegiatan belajar mengajar. Interaksi tersebut dapat juga terjadi antara siswa dengan siswa (S – S), siswa dengan bahan ajar (S – Model Pembelajaran Matematika dengan Pendekatan Penemuan Terbimbing 11 B), siswa dengan guru (S – G), siswa dengan bahan ajar dan siswa (S – B – S) dan siswa dengan bahan ajar dan guru (S – B – G). Interaksi dapat pula dilakukan antara siswa baik dalam kelompok-kelompok kecil maupun kelompok besar (kelas). Dalam melakukan aktivitas atau penemuan dalam kelompok- kelompok kecil, siswa berinteraksi satu dengan yang lain. Interaksi ini dapat berupa saling sharing atau siswa yang lemah bertanya dan dijelaskan oleh siswa yang lebih pandai. Kondisi semacam ini selain akan berpengaruh pada penguasaan siswa terhadap materi matematika, juga akan dapat meningkatkan social skills siswa, sehingga interaksi merupakan aspek penting dalam pembelajaran matematika. dalam kelas. Tujuannya untuk saling mempengaruhi berpikir masing-masing, guru memancing berpikir siswa yaitu dengan pertanyaan-pertanyaan terfokus sehingga dapat memungkinkan siswa untuk memahami dan mengkontruksikan konsep-konsep tertentu, membangun aturan-aturan dan belajar menemukan sesuatu untuk memecahkan masalah.
Salah satu strategi penemuan yang ada adalah Strategi Penemuan Induktif Sebuah argumen induktif meliputi dua komponen, yang pertama terdiri dari pernyataan/fakta yang mengakui untuk mendukung kesimpulan dan yang kedua bagian dari argumentasi itu (Cooney dan Davis, 1975: 143). Kesimpulan dari suatu argumentasi induktif tidak perlu mengikuti fakta yang mendukungnya. Fakta mungkin membuat lebih dipercaya, tergantung sifatnya, tetapi itu tidak bias membuktikan dalil untuk mendukung.

Dengan penjelasan di atas kemudian dikembangkan dalam suatu model pembelajaran yang sering disebut model pembelajaran dengan Penemuan Terbimbing secara Induktif. Pembelajaran dengan model ini dapat diselenggarakan secara individu atau kelompok. Model ini sangat bermanfaat untuk mata pelajaran matematika sesuai dengan karakteristik untuk berpikir sendiri sehingga dapat menemukan prinsip umum berdasarkan bahan yang disediakan oleh guru dan sampai seberapa jauh siswa dibimbing tergantung pada kemampuannya dan materi yang sedang dipelajari. Dengan model penemuan terbimbing secara induktif ini siswa dihadapkan kepada situasi dimana siswa bebas menyelidiki dan menarik kesimpulan. Terkaan, intuisi dan mencoba-coba (trial and error) hendaknya dianjurkan dan guru sebagai penunjuk jalan dan membantu siswa agar mempergunakan ide, konsep dan ketesrampilan yang sudah mereka pelajari untuk menemukan pengetahuan yang baru. Dalam model pembelajaran dengan penemuan terbimbing, peran siswa cukup besar karena pembelajaran tidak lagi terpusat pada guru tetapi pada siswa. Guru memulai kegiatan belajar mengajar dengan menjelaskan kegiatan yang akan dilakukan siswa dan mengorganisir kelas untuk kegiatan seperti pemecahan masalah, investigasi atau aktivitas lainnya.

Tidak ada komentar:

Posting Komentar

Popular Posts

Most Reading

Blogger templates